Fabrication of Collagen-Coated Poly (beta-hydroxy butyrate-co-beta-hydroxyvalerate) Nanofiber by Chemical and Physical Methods

ثبت نشده
چکیده

Tissue engineering is the design and engineering of structures to rebuild and repair damaged tissue of the body. Poly (beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) scaffold has shown good biocompatibility and biodegradable properties. Nanofibers have improved the performance of biomaterials, and could be considered effective. Electro spinning is one of the most important methods of fabricating nanofibrous scaffolding. In this study, PHBV nanofibers were well designed then modified with immobilized collagen by a chemical method (glutaraldehyde) and physical method (oxygen plasma). The samples were evaluated by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), contact angle and finally, cell culture. ATR-FTIR structural analysis showed the presence of collagen on the nanofiber surfaces both the methods. The SEM images showed the average size of nanofibers to be about 280 nm, which increased with a collagen coating up to 350-400 nm in the both methods. Contact angle analysis were 67° for uncoated nanofibers and 52-56° for coated nanofibers by the both methods. Cellular investigations (unrestricted somatic stem cells) showed better adhesion and cell growth and proliferation of coated samples by physical method than chemical method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of coated - collagen electro-spun PHBV nanofiber film by chemical method and its cellular study

Tissue engineering is defined as the designing and engineering of structures to rebuild and repair a body damaged tissue. Scaffolding Poly Hydroxy Butyrate Valraty (PHBV) has shown good biocompatibility and biodegradable properties. Nanofibers have improved the performance of biomaterials, and could be considered effective. One of the important methods for designing nanofiber scaffold is the el...

متن کامل

Fabrication of coated - collagen electro-spun PHBV nanofiber film by chemical method and its cellular study

Tissue engineering is defined as the designing and engineering of structures to rebuild and repair a body damaged tissue. Scaffolding Poly Hydroxy Butyrate Valraty (PHBV) has shown good biocompatibility and biodegradable properties. Nanofibers have improved the performance of biomaterials, and could be considered effective. One of the important methods for designing nanofiber scaffold is the el...

متن کامل

Fabrication and Comparison of Electro-Spun Poly Hydroxy Butyrate Valrate Nanofiber and Normal Film and its Cellular Study

Tissue engineering is defined as the designing and engineering of structures to rebuild and repair a body damaged tissue. Scaffolding Poly Hydroxy Butyrate Valrate (PHBV) has shown good biocompatibility and biodegradable properties. Nanofibers have improved the performance of biomaterials, and could be considered effective. One of the important methods for designing nanofiber scaffold is the el...

متن کامل

Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering

Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The t...

متن کامل

3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering

The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011